3.1380 \(\int \frac{(g \cos (e+f x))^{3/2} \csc (e+f x)}{a+b \sin (e+f x)} \, dx\)

Optimal. Leaf size=439 \[ \frac{g^{3/2} \sqrt [4]{b^2-a^2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{g \cos (e+f x)}}{\sqrt{g} \sqrt [4]{b^2-a^2}}\right )}{a \sqrt{b} f}+\frac{g^{3/2} \sqrt [4]{b^2-a^2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{g \cos (e+f x)}}{\sqrt{g} \sqrt [4]{b^2-a^2}}\right )}{a \sqrt{b} f}+\frac{g^2 \left (a^2-b^2\right ) \sqrt{\cos (e+f x)} \Pi \left (\frac{2 b}{b-\sqrt{b^2-a^2}};\left .\frac{1}{2} (e+f x)\right |2\right )}{b f \left (a^2-b \left (b-\sqrt{b^2-a^2}\right )\right ) \sqrt{g \cos (e+f x)}}+\frac{g^2 \left (a^2-b^2\right ) \sqrt{\cos (e+f x)} \Pi \left (\frac{2 b}{b+\sqrt{b^2-a^2}};\left .\frac{1}{2} (e+f x)\right |2\right )}{b f \left (a^2-b \left (\sqrt{b^2-a^2}+b\right )\right ) \sqrt{g \cos (e+f x)}}-\frac{g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{a f}-\frac{g^{3/2} \tanh ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{a f}-\frac{2 g^2 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right )}{b f \sqrt{g \cos (e+f x)}} \]

[Out]

-((g^(3/2)*ArcTan[Sqrt[g*Cos[e + f*x]]/Sqrt[g]])/(a*f)) + ((-a^2 + b^2)^(1/4)*g^(3/2)*ArcTan[(Sqrt[b]*Sqrt[g*C
os[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])])/(a*Sqrt[b]*f) - (g^(3/2)*ArcTanh[Sqrt[g*Cos[e + f*x]]/Sqrt[g]])/(
a*f) + ((-a^2 + b^2)^(1/4)*g^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])])/(a*Sq
rt[b]*f) - (2*g^2*Sqrt[Cos[e + f*x]]*EllipticF[(e + f*x)/2, 2])/(b*f*Sqrt[g*Cos[e + f*x]]) + ((a^2 - b^2)*g^2*
Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (e + f*x)/2, 2])/(b*(a^2 - b*(b - Sqrt[-a^2 + b^2]
))*f*Sqrt[g*Cos[e + f*x]]) + ((a^2 - b^2)*g^2*Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (e +
 f*x)/2, 2])/(b*(a^2 - b*(b + Sqrt[-a^2 + b^2]))*f*Sqrt[g*Cos[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 1.13782, antiderivative size = 439, normalized size of antiderivative = 1., number of steps used = 21, number of rules used = 16, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.516, Rules used = {2898, 2565, 321, 329, 212, 206, 203, 2695, 2867, 2642, 2641, 2702, 2807, 2805, 208, 205} \[ \frac{g^{3/2} \sqrt [4]{b^2-a^2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{g \cos (e+f x)}}{\sqrt{g} \sqrt [4]{b^2-a^2}}\right )}{a \sqrt{b} f}+\frac{g^{3/2} \sqrt [4]{b^2-a^2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{g \cos (e+f x)}}{\sqrt{g} \sqrt [4]{b^2-a^2}}\right )}{a \sqrt{b} f}+\frac{g^2 \left (a^2-b^2\right ) \sqrt{\cos (e+f x)} \Pi \left (\frac{2 b}{b-\sqrt{b^2-a^2}};\left .\frac{1}{2} (e+f x)\right |2\right )}{b f \left (a^2-b \left (b-\sqrt{b^2-a^2}\right )\right ) \sqrt{g \cos (e+f x)}}+\frac{g^2 \left (a^2-b^2\right ) \sqrt{\cos (e+f x)} \Pi \left (\frac{2 b}{b+\sqrt{b^2-a^2}};\left .\frac{1}{2} (e+f x)\right |2\right )}{b f \left (a^2-b \left (\sqrt{b^2-a^2}+b\right )\right ) \sqrt{g \cos (e+f x)}}-\frac{g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{a f}-\frac{g^{3/2} \tanh ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{a f}-\frac{2 g^2 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right )}{b f \sqrt{g \cos (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[((g*Cos[e + f*x])^(3/2)*Csc[e + f*x])/(a + b*Sin[e + f*x]),x]

[Out]

-((g^(3/2)*ArcTan[Sqrt[g*Cos[e + f*x]]/Sqrt[g]])/(a*f)) + ((-a^2 + b^2)^(1/4)*g^(3/2)*ArcTan[(Sqrt[b]*Sqrt[g*C
os[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])])/(a*Sqrt[b]*f) - (g^(3/2)*ArcTanh[Sqrt[g*Cos[e + f*x]]/Sqrt[g]])/(
a*f) + ((-a^2 + b^2)^(1/4)*g^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])])/(a*Sq
rt[b]*f) - (2*g^2*Sqrt[Cos[e + f*x]]*EllipticF[(e + f*x)/2, 2])/(b*f*Sqrt[g*Cos[e + f*x]]) + ((a^2 - b^2)*g^2*
Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (e + f*x)/2, 2])/(b*(a^2 - b*(b - Sqrt[-a^2 + b^2]
))*f*Sqrt[g*Cos[e + f*x]]) + ((a^2 - b^2)*g^2*Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (e +
 f*x)/2, 2])/(b*(a^2 - b*(b + Sqrt[-a^2 + b^2]))*f*Sqrt[g*Cos[e + f*x]])

Rule 2898

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*sin[(e_.) + (f_.)*(x_)]^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])
, x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, sin[e + f*x]^n/(a + b*sin[e + f*x]), x], x] /; FreeQ[{a, b,
e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[n] && (LtQ[n, 0] || IGtQ[p + 1/2, 0])

Rule 2565

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 2695

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*(g*
Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + p)), x] + Dist[(g^2*(p - 1))/(b*(m + p)), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*(b + a*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g, m}, x] &&
NeQ[a^2 - b^2, 0] && GtQ[p, 1] && NeQ[m + p, 0] && IntegersQ[2*m, 2*p]

Rule 2867

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]))/((a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)]), x_Symbol] :> Dist[d/b, Int[(g*Cos[e + f*x])^p, x], x] + Dist[(b*c - a*d)/b, Int[(g*Cos[e + f*x])^
p/(a + b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2702

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> With[{q = Rt[
-a^2 + b^2, 2]}, -Dist[a/(2*q), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (Dist[(b*g)/f, Sub
st[Int[1/(Sqrt[x]*(g^2*(a^2 - b^2) + b^2*x^2)), x], x, g*Cos[e + f*x]], x] - Dist[a/(2*q), Int[1/(Sqrt[g*Cos[e
 + f*x]]*(q - b*Cos[e + f*x])), x], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{(g \cos (e+f x))^{3/2} \csc (e+f x)}{a+b \sin (e+f x)} \, dx &=\int \left (\frac{(g \cos (e+f x))^{3/2} \csc (e+f x)}{a}-\frac{b (g \cos (e+f x))^{3/2}}{a (a+b \sin (e+f x))}\right ) \, dx\\ &=\frac{\int (g \cos (e+f x))^{3/2} \csc (e+f x) \, dx}{a}-\frac{b \int \frac{(g \cos (e+f x))^{3/2}}{a+b \sin (e+f x)} \, dx}{a}\\ &=-\frac{2 g \sqrt{g \cos (e+f x)}}{a f}-\frac{\operatorname{Subst}\left (\int \frac{x^{3/2}}{1-\frac{x^2}{g^2}} \, dx,x,g \cos (e+f x)\right )}{a f g}-\frac{g^2 \int \frac{b+a \sin (e+f x)}{\sqrt{g \cos (e+f x)} (a+b \sin (e+f x))} \, dx}{a}\\ &=-\frac{g \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (1-\frac{x^2}{g^2}\right )} \, dx,x,g \cos (e+f x)\right )}{a f}-\frac{g^2 \int \frac{1}{\sqrt{g \cos (e+f x)}} \, dx}{b}-\frac{\left (\left (-a^2+b^2\right ) g^2\right ) \int \frac{1}{\sqrt{g \cos (e+f x)} (a+b \sin (e+f x))} \, dx}{a b}\\ &=-\frac{(2 g) \operatorname{Subst}\left (\int \frac{1}{1-\frac{x^4}{g^2}} \, dx,x,\sqrt{g \cos (e+f x)}\right )}{a f}+\frac{\left (\sqrt{-a^2+b^2} g^2\right ) \int \frac{1}{\sqrt{g \cos (e+f x)} \left (\sqrt{-a^2+b^2}-b \cos (e+f x)\right )} \, dx}{2 b}+\frac{\left (\sqrt{-a^2+b^2} g^2\right ) \int \frac{1}{\sqrt{g \cos (e+f x)} \left (\sqrt{-a^2+b^2}+b \cos (e+f x)\right )} \, dx}{2 b}+\frac{\left (\left (a^2-b^2\right ) g^3\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (\left (a^2-b^2\right ) g^2+b^2 x^2\right )} \, dx,x,g \cos (e+f x)\right )}{a f}-\frac{\left (g^2 \sqrt{\cos (e+f x)}\right ) \int \frac{1}{\sqrt{\cos (e+f x)}} \, dx}{b \sqrt{g \cos (e+f x)}}\\ &=-\frac{2 g^2 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right )}{b f \sqrt{g \cos (e+f x)}}-\frac{g^2 \operatorname{Subst}\left (\int \frac{1}{g-x^2} \, dx,x,\sqrt{g \cos (e+f x)}\right )}{a f}-\frac{g^2 \operatorname{Subst}\left (\int \frac{1}{g+x^2} \, dx,x,\sqrt{g \cos (e+f x)}\right )}{a f}+\frac{\left (2 \left (a^2-b^2\right ) g^3\right ) \operatorname{Subst}\left (\int \frac{1}{\left (a^2-b^2\right ) g^2+b^2 x^4} \, dx,x,\sqrt{g \cos (e+f x)}\right )}{a f}+\frac{\left (\sqrt{-a^2+b^2} g^2 \sqrt{\cos (e+f x)}\right ) \int \frac{1}{\sqrt{\cos (e+f x)} \left (\sqrt{-a^2+b^2}-b \cos (e+f x)\right )} \, dx}{2 b \sqrt{g \cos (e+f x)}}+\frac{\left (\sqrt{-a^2+b^2} g^2 \sqrt{\cos (e+f x)}\right ) \int \frac{1}{\sqrt{\cos (e+f x)} \left (\sqrt{-a^2+b^2}+b \cos (e+f x)\right )} \, dx}{2 b \sqrt{g \cos (e+f x)}}\\ &=-\frac{g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{a f}-\frac{g^{3/2} \tanh ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{a f}-\frac{2 g^2 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right )}{b f \sqrt{g \cos (e+f x)}}-\frac{\sqrt{-a^2+b^2} g^2 \sqrt{\cos (e+f x)} \Pi \left (\frac{2 b}{b-\sqrt{-a^2+b^2}};\left .\frac{1}{2} (e+f x)\right |2\right )}{b \left (b-\sqrt{-a^2+b^2}\right ) f \sqrt{g \cos (e+f x)}}+\frac{\sqrt{-a^2+b^2} g^2 \sqrt{\cos (e+f x)} \Pi \left (\frac{2 b}{b+\sqrt{-a^2+b^2}};\left .\frac{1}{2} (e+f x)\right |2\right )}{b \left (b+\sqrt{-a^2+b^2}\right ) f \sqrt{g \cos (e+f x)}}+\frac{\left (\sqrt{-a^2+b^2} g^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-a^2+b^2} g-b x^2} \, dx,x,\sqrt{g \cos (e+f x)}\right )}{a f}+\frac{\left (\sqrt{-a^2+b^2} g^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-a^2+b^2} g+b x^2} \, dx,x,\sqrt{g \cos (e+f x)}\right )}{a f}\\ &=-\frac{g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{a f}+\frac{\sqrt [4]{-a^2+b^2} g^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt{g}}\right )}{a \sqrt{b} f}-\frac{g^{3/2} \tanh ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{a f}+\frac{\sqrt [4]{-a^2+b^2} g^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt{g}}\right )}{a \sqrt{b} f}-\frac{2 g^2 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right )}{b f \sqrt{g \cos (e+f x)}}-\frac{\sqrt{-a^2+b^2} g^2 \sqrt{\cos (e+f x)} \Pi \left (\frac{2 b}{b-\sqrt{-a^2+b^2}};\left .\frac{1}{2} (e+f x)\right |2\right )}{b \left (b-\sqrt{-a^2+b^2}\right ) f \sqrt{g \cos (e+f x)}}+\frac{\sqrt{-a^2+b^2} g^2 \sqrt{\cos (e+f x)} \Pi \left (\frac{2 b}{b+\sqrt{-a^2+b^2}};\left .\frac{1}{2} (e+f x)\right |2\right )}{b \left (b+\sqrt{-a^2+b^2}\right ) f \sqrt{g \cos (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 5.30359, size = 484, normalized size = 1.1 \[ \frac{\csc (e+f x) (g \cos (e+f x))^{3/2} \left (a+b \sqrt{\sin ^2(e+f x)}\right ) \left (8 a b^{3/2} \cos ^{\frac{5}{2}}(e+f x) F_1\left (\frac{5}{4};\frac{1}{2},1;\frac{9}{4};\cos ^2(e+f x),\frac{b^2 \cos ^2(e+f x)}{b^2-a^2}\right )-5 \left (a^2-b^2\right ) \left (\sqrt{2} \sqrt [4]{a^2-b^2} \log \left (-\sqrt{2} \sqrt{b} \sqrt [4]{a^2-b^2} \sqrt{\cos (e+f x)}+\sqrt{a^2-b^2}+b \cos (e+f x)\right )-\sqrt{2} \sqrt [4]{a^2-b^2} \log \left (\sqrt{2} \sqrt{b} \sqrt [4]{a^2-b^2} \sqrt{\cos (e+f x)}+\sqrt{a^2-b^2}+b \cos (e+f x)\right )+2 \sqrt{2} \sqrt [4]{a^2-b^2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{b} \sqrt{\cos (e+f x)}}{\sqrt [4]{a^2-b^2}}\right )-2 \sqrt{2} \sqrt [4]{a^2-b^2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{b} \sqrt{\cos (e+f x)}}{\sqrt [4]{a^2-b^2}}+1\right )-2 \sqrt{b} \log \left (1-\sqrt{\cos (e+f x)}\right )+2 \sqrt{b} \log \left (\sqrt{\cos (e+f x)}+1\right )+4 \sqrt{b} \tan ^{-1}\left (\sqrt{\cos (e+f x)}\right )\right )\right )}{20 a \sqrt{b} f \left (a^2-b^2\right ) \cos ^{\frac{3}{2}}(e+f x) (a \csc (e+f x)+b)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((g*Cos[e + f*x])^(3/2)*Csc[e + f*x])/(a + b*Sin[e + f*x]),x]

[Out]

((g*Cos[e + f*x])^(3/2)*Csc[e + f*x]*(8*a*b^(3/2)*AppellF1[5/4, 1/2, 1, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]
^2)/(-a^2 + b^2)]*Cos[e + f*x]^(5/2) - 5*(a^2 - b^2)*(2*Sqrt[2]*(a^2 - b^2)^(1/4)*ArcTan[1 - (Sqrt[2]*Sqrt[b]*
Sqrt[Cos[e + f*x]])/(a^2 - b^2)^(1/4)] - 2*Sqrt[2]*(a^2 - b^2)^(1/4)*ArcTan[1 + (Sqrt[2]*Sqrt[b]*Sqrt[Cos[e +
f*x]])/(a^2 - b^2)^(1/4)] + 4*Sqrt[b]*ArcTan[Sqrt[Cos[e + f*x]]] - 2*Sqrt[b]*Log[1 - Sqrt[Cos[e + f*x]]] + 2*S
qrt[b]*Log[1 + Sqrt[Cos[e + f*x]]] + Sqrt[2]*(a^2 - b^2)^(1/4)*Log[Sqrt[a^2 - b^2] - Sqrt[2]*Sqrt[b]*(a^2 - b^
2)^(1/4)*Sqrt[Cos[e + f*x]] + b*Cos[e + f*x]] - Sqrt[2]*(a^2 - b^2)^(1/4)*Log[Sqrt[a^2 - b^2] + Sqrt[2]*Sqrt[b
]*(a^2 - b^2)^(1/4)*Sqrt[Cos[e + f*x]] + b*Cos[e + f*x]]))*(a + b*Sqrt[Sin[e + f*x]^2]))/(20*a*Sqrt[b]*(a^2 -
b^2)*f*Cos[e + f*x]^(3/2)*(b + a*Csc[e + f*x]))

________________________________________________________________________________________

Maple [A]  time = 2.729, size = 216, normalized size = 0.5 \begin{align*} -{\frac{1}{2\,af}{g}^{{\frac{3}{2}}}\ln \left ( 2\,{\frac{\sqrt{g}\sqrt{-2\, \left ( \sin \left ( 1/2\,fx+e/2 \right ) \right ) ^{2}g+g}+2\,g\cos \left ( 1/2\,fx+e/2 \right ) -g}{-1+\cos \left ( 1/2\,fx+e/2 \right ) }} \right ) }-{\frac{1}{2\,af}{g}^{{\frac{3}{2}}}\ln \left ( 2\,{\frac{\sqrt{g}\sqrt{-2\, \left ( \sin \left ( 1/2\,fx+e/2 \right ) \right ) ^{2}g+g}-2\,g\cos \left ( 1/2\,fx+e/2 \right ) -g}{\cos \left ( 1/2\,fx+e/2 \right ) +1}} \right ) }+2\,{\frac{g\sqrt{-2\, \left ( \sin \left ( 1/2\,fx+e/2 \right ) \right ) ^{2}g+g}}{af}}+{\frac{{g}^{2}}{af}\ln \left ( 2\,{\frac{\sqrt{-g}\sqrt{-2\, \left ( \sin \left ( 1/2\,fx+e/2 \right ) \right ) ^{2}g+g}-g}{\cos \left ( 1/2\,fx+e/2 \right ) }} \right ){\frac{1}{\sqrt{-g}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*cos(f*x+e))^(3/2)*csc(f*x+e)/(a+b*sin(f*x+e)),x)

[Out]

-1/2/a/f*g^(3/2)*ln(2/(-1+cos(1/2*f*x+1/2*e))*(g^(1/2)*(-2*sin(1/2*f*x+1/2*e)^2*g+g)^(1/2)+2*g*cos(1/2*f*x+1/2
*e)-g))-1/2/a/f*g^(3/2)*ln(2/(cos(1/2*f*x+1/2*e)+1)*(g^(1/2)*(-2*sin(1/2*f*x+1/2*e)^2*g+g)^(1/2)-2*g*cos(1/2*f
*x+1/2*e)-g))+2/a/f*g*(-2*sin(1/2*f*x+1/2*e)^2*g+g)^(1/2)+1/a/(-g)^(1/2)/f*g^2*ln(2/cos(1/2*f*x+1/2*e)*((-g)^(
1/2)*(-2*sin(1/2*f*x+1/2*e)^2*g+g)^(1/2)-g))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (g \cos \left (f x + e\right )\right )^{\frac{3}{2}} \csc \left (f x + e\right )}{b \sin \left (f x + e\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)*csc(f*x+e)/(a+b*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)*csc(f*x + e)/(b*sin(f*x + e) + a), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)*csc(f*x+e)/(a+b*sin(f*x+e)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))**(3/2)*csc(f*x+e)/(a+b*sin(f*x+e)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (g \cos \left (f x + e\right )\right )^{\frac{3}{2}} \csc \left (f x + e\right )}{b \sin \left (f x + e\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)*csc(f*x+e)/(a+b*sin(f*x+e)),x, algorithm="giac")

[Out]

integrate((g*cos(f*x + e))^(3/2)*csc(f*x + e)/(b*sin(f*x + e) + a), x)